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Abstract 
 

 Currently, each future mission to Jupiter and beyond must carry the traditional suite of 

telecommunications systems for command and control and for mission data transmission to earth.  

The telecommunications hardware includes the large antenna and the high-power transmitters that 

enable the communications link.  Yet, future spacecraft will be scaled down from the hallmark 

missions of Galileo and Cassini to Jupiter and Saturn respectively.  This dictates that a higher 

percentage of the spacecraft weight and power must be dedicated to telecommunications system. 

The following analysis quantifies this impact to future missions and then explores the merits of an 

alternative approach using deep space relay stations for the link back to earth.  It will be 

demonstrated that a telecommunications relay satellite would reduce telecommunications weight 

and power sufficiently to add several more instruments.  Additionally, alternative system 

architectures are explored and trade-off presented to arrive at a preliminary system concept for 

this mission. 

 

Introduction: 
 

 Galileo and Cassini are the hallmark mission spacecraft (S/C) exploring the outer planets.  

Each contains a myriad of probes, instruments, experiments and the necessary 

telecommunications systems.  In fact, both S/C carry large antennas and the accompanying high 

power transmitters in order to provide high data-rate communications.  Future missions are 

expected to be significantly scaled down in physical size but to increase in the number of 

spacecraft missions.  This approach mitigates any single S/C catastrophic event.  However, 

currently each mission must carry the same large high gain antennas and high power transmitters 

of those earlier hallmark missions.  As a result, S/C will have a much higher percentage of their 

weight and power devoted to the telecommunication system hardware.  Hence, this study 

addresses the possibility of placing a telecommunications relay station initially at Jupiter (and 

later Saturn and beyond). The relay station supports multiple simultaneous smaller missions at 

Jupiter and to its moons without dedicating significant percentages of future S/C weight and 

power for their telecommunication systems. For this study, a mission launch date of 2012 is 

assumed.   
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Mission Analysis 
 

 The first quantification of weight and power will show the significance of these 

parameters to future missions.  The Galileo mission to Jupiter had a deployable mesh reflector 

and 100W X-band transmit power. Cassini has a 4.0m graphite epoxy reflector (with multiple 

feeds for radar mapping) and 120W X-band transmit power.  In order to derive weight and power 

percentages for these missions, assume the transmitter has a 50% efficiency and include the 

power of the transponder.  One can then derive a rough estimate of the weight and power 

percentage of these previous mission S/C.  Now the expected percentages for future missions can 

be calculated assuming the future mission S/C are in the 800 kg class and the same required 

weight and power.   

  

 Alternatively, if one considers that future mission S/C only require direct communication 

with the proposed relay station, then these percentages drop significantly.  Figures 1 and 2 show 

the impacts to mass and power for future missions using the telecommunications relay station.   

 
 
 

Weight (kg) Galileo Cassini

Future 
Smaller 
Missions

Future 
Mission 
with 
JTRS

S/C Weight 2100 2175 800 800

Antenna and Comm Sys Weight 126 185 150 50

Percentage Weight 6.0% 8.5% 18.8% 6.3%

Number of Instruments 10 12 4 5  
* *

* potential maximum number 
Table 1.  Comparison of Mission Weight 

 

Power (W)      Galileo Cassini

Future 
Smaller 
Missions

Future 
Mission 
with 
JTRS

S/C power 682 630 460 460

Comm Sys Power 250 285 280 23.6

Percentage Power 36.7% 45.2% 60.9% 5.1%

Number of Instruments 10 12 3-4 5-6  
* *

Table 2:  Comparison of Mission Power 

 NASA/CR—2004-213053 2



 
 These future missions can benefit from lower communication system weight and power 

by either increasing the number or increasing the complexity of each mission’s instrument suite.  

By carrying only a local telecommunication system rather than the complete earth-link system on 

each mission, sufficient mass and power are available for one to two additional instruments, 

probes, or experiments as shown in Tables 1 and 2.  

 

 This study will focus on the nearest of the outer planets, Jupiter.  The proposed 

telecommunications relay station S/C does not orbit Jupiter but instead, would be positioned at 

the innermost of Jupiter’s five libration points, designated L1 in Figure 1 [1].  These libration 

points are locations where the Sun-Jupiter gravitational potentials are zero.  L1 has the advantage 

of being a lesser distance from both the host planet and from earth than the others.  In fact, a key 

reason for this location is the void of meteorites due to the gradient of the gravitational potential.  

That is to say, any moving object would not stop to this location, but a S/C could be placed and 

maintained there. 

 
 

 

L5 

L4 

L1 L2 L3 

Figure 1:  Jupiter’s Libration Points 

 

 

The Link Analysis: 

 Previous mission analyses have concluded that the downlink is the driving performance 

specification for deep space communications [2].  Hence, this study will only address the S/C-to-

earth link.  The Deep Space Network (DSN) is an international network of large steerable 

reflector antennas supporting most interplanetary spacecraft missions.  In addition to 
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communications, the DSN uses these antennas for radio and radar astronomy observations to 

explore the planets, the galaxy and the universe.  The DSN consists of three communications 

facilities placed approximately 120 degrees apart around the world: in California's Mojave Desert 

at Goldstone; near Madrid, Spain; and near Canberra, Australia. Each facility has several 

antennas ranging from 15m to 70m in diameter.  The strategic placement permits constant 

observation of spacecraft as the Earth rotates.   

 The DSN has been transitioning its primary deep space communications from X-band to 

Ka-band frequencies, 31.8-32.3 GHz for downlink and 34.2-34.7 GHz for uplink [3].  This 

permits usage of significantly higher bandwidths at Ka-band, 500 MHz, versus 45MHz at X-

band.  Hence, Ka-band is assumed to be primary for the relay satellite communications with X-

band as a secondary back-up. 

 Ground rules [4] for this link analysis include using the DSN 34m with a G/T=61dB/K 

[3] and a minimum data rate of 1 Mb/s with current coding techniques [5].   

The Small Deep Space Transponder (SDST) is also assumed for the S/C.  The Bit Error Rate 

(BER) of 10-7 at 0.65dB S/N used is consistent with today’s technology assessment [5].   

 

 Table 3 shows a preliminary link budget including the key parameters of the analysis. 

The selection of parameter values reflects mostly maximum conditions to meet the minimum data 

rate. The earth-to-relay station distance could be as large as Jupiter plus Earth’s orbit radius. 

Nominal values for losses are included for polarization, atmospheric effects, and pointing error.  

The Effective Isotropic Radiated Power (EIRP) was adjusted until a positive 3dB margin was 

achieved. 

  

 Propagation effects were evaluated based on the favorable locations of the three 

sites of the DSN ground stations [6], their weather profile, and assuming that if one site had 

significant rain, that another site is visible and has improved operating conditions.  Calculations 

use the direct sum rather than an RSS since this analysis assumes the quasi-worse case conditions.  

Table 4 shows the propagation parameters used in the analysis and their corresponding values. 
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Table 3:  Jupiter-to-Earth Link Budget 
 

Link Budget  
Communications System Parameters Value / Units 

Transmitter Output Power  25.0 W 
Transmitter Output Power  14.0 dBW 
Feed Losses  -1.0 dB 
Transmit Antenna Gain  71.0 dBiC 

Tx Effective Iso Radiated Power 84.0 dBW 
       

Signal Frequency  32.00 GHz 
Path Length  9.28E+08 km 
Path Loss -301.9 dB 
TOTAL Atmospheric Losses  -4.5 dB 
Polarization Loss  -0.3 dB 
Pointing Loss  -3.0 dB 
Received Power  -225.67 dB 
     
Receive System G/T  61.00 dB/K 
Boltzmann's Constant  -228.6 dBW/Hz-K 

Rx Received C/No  63.93 dB/Hz 
       

Channel Bandwidth  500.00 MHz 
Channel Bandwidth  87.0 dB-Hz 

Channel Received C/N  -23.1 dB 
       

Bit Rate  1.00 Mb/s 
Bit Rate  60.00 dB-Hz Data 

Rate Received Eb/No  3.93 dB 
     

Required Eb/No    = 0.65 dB 
    

  
  
  
  Link Margin     = 3.28 dB 

 
 
    Table 4:  Atmospheric Losses 
 

Ka-Band Propagation Effect Losses  
Rain Attenuation 0 dB 
Atmospheric Gaseous Absorption 1.2 dB 
Cloud Attenuation 1 dB 
Scintillation 0.8 dB 
Atmospheric Noise 1.5 dB 
Multipath 0 dB 
Ground Antenna Moisture 0 dB 
     
TOTAL Atmospheric Equivalent Loss = 4.5 dB 
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 The major parameter resulting from this study is the EIRP at a value of 84 dBW.  Hence, 

the first trade involving EIRP, relates the Ka-band transmit power to gain or aperture size.  

Assuming 70% aperture efficiency, the EIRP dependence on antenna gain and aperture size is 

related to transmit power as shown in Figures 2 and 3.  One can determine from Figure 3, that 

transmit power less than 10W pushes the antenna towards very large diameters.   
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         Figure 2:  EIRP Trade for Transmit Power vs Gain 

 
 Yet, these results show the critical range of parameters includes both low transmit power 

coupled with large diameter apertures.  For the remainder of this study, a 13.3m diameter aperture 

with 15W transmit power is assumed to be near optimum although 11.5m and 20W is equally 

valid for Jupiter.  With a relay station envisioned for Saturn as well at nearly twice the Jupiter 

link distance, the same antenna can be utilized by increasing the transmit power by a factor of 

four while still retaining equivalent performance.  Hence, 13.3m and 15W are the logical choices 

for the telecommunications system baseline. 

Jupiter Link Ka-Band Antenna Diameter 
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   Figure 3:  EIRP Trade for Transmit Power Aperture Size 
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Antenna Survey and Trades 
 

 A quick survey of current missions shows that no antenna technology is readily available 

for this 15m class Ka-band antenna system.  Hence a more detailed survey of those emerging 

technologies for such an aperture will be addressed.  Any architecture must be deployable from 

the launch stowed configuration within the S/C fairing.  Typical fairing diameters range between 

2 and 4.5m. Three candidate technology approaches are available: (1) Phased Array, (2) 

Reflectors and (3) Lenses.   

  

 To review the state-of-the-art in phased array technology, we take a look at the goals 

reported for large arrays.  These projects have addressed apertures of similar size, but at 

frequencies much lower.  When the aperture parameters are scaled to Ka-band the resulting 

metrics are expected to be in the range of 3 kg/m2 , 0.35 W/m2, and 100’sK$/m2.  Even for a 

thinned array, the number and density of elements are high and the interconnections are a huge 

complexity issue.  In addition it should be mentioned that significant DC power is required just to 

maintain the electronics at a high-reliability operating temperature range.  But the real issue that 

currently excludes phased arrays from being a viable technology in this application is the cost.  

Reported cost Figures far exceed all alternative options.  Hence, phased arrays are excluded from 

further consideration in this application. 

  

 Reflectors and Lenses have many more similarities than at first glance.  Both require 

deployment of shaped surfaces, both use external feeds to illuminate their aperture areas, and both 

require low-loss materials (either reflection or transmission).  In addition, their required surface 

accuracies are within a factor of 2.  The obvious significant difference is that one is reflective 

while the other is transmissive.  While many alternate schemes for deployable reflectors have 

been proposed, lenses have not been as vigorously pursued.  Even with this lag, their similarity 

goes even further.  Recently, the same supporting structure used in mesh reflector systems 

produced for MBSAT and Thuraya [7] has been proposed for waveguide lenses [8,9].  The 

potential for development of a large deployable lens is not near term for this application.  

Therefore, only reflectors will be pursued for this study. 

 

 Clearly, the leading technology for L-band and lower frequencies for large light-weight 

deployable reflectors is the Astromesh™ shown in Figure 4.  With a stow diameter less than one-
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tenth the deployed diameter, it easily meets the critical stowed-volume packaging constraints.  

However to date, the surface and surface accuracies suitable for Ka-band operation have yet to be 

demonstrated in light-weight space-flight systems [10].  This is an area requiring a closer look in 

this study. 

 

 Among the various alternate technologies for reflector surfaces, one of the more 

interesting approaches is the inflatable surface.  Inflatables have been the subject of study for 

several years.  In fact, an initial flight test was performed which was successfully deployed in 

space [11,12] and shown in orbit in Figure 5.  Since that time, continued advancements have 

taken place.  Recently, key developments in materials has enabled this study to take another look 

at this conceptually promising technology. 

 

         
       Figure 4:  Astromesh™ Reflector                                  Figure 5:  Initial Inflatable Flight  

       (Astro Aerospace web page           Experiment  (L’Garde [11] ) 

       http://www.astro-aerospace.com)                                  

 
   

 A quick comparison of the properties of the Astromesh™ and inflatables reveals several 

key distinguishing properties.  First is the obvious yet not so apparent observation that the mesh 

reflector mass increases dramatically with increasing frequency.  This is due to two factors.  First, 

the mesh size must decrease with increasing frequency in order to maintain a high reflectivity, 

hence an increasing mass density.  Second, the facet size decreases as a function of frequency, 

also requires an increasing mass density.  The facet size is the smallest increment of surface area 

created from the multitude of support points.  This leads also to an increasing mass density with 

frequency since more tie points are required the keep the peak surface error a small fraction of a 

wavelength.   
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 Figure 6 shows the mass reported for mesh and inflatable reflectors based on either direct 

measurements reported or extrapolation of planned mission mass density for those available in 

the literature [13,14,15,16,17,18,19,20].  Note that there is little to distinguish the two 

technologies.   

 

Comparison of Reflector Antenna Weight
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Figure 6:  Estimates of Reflector Mass for Mesh and Inflatables 

 

 Since most of the reported weights for mesh reflectors were at lower frequencies, their 

weight was scaled to the Ka-band frequency. Both a smaller mesh size and a smaller facet size are 

required.  A smaller mesh size maintains the high reflectivity surface property as a function of the 

shorter wavelengths.  Second, weight must be scaled for the decreasing size of the facet, the 

smallest incremental surface area.  A smaller facet requires an increasing number of tie-points 

that is increasing in proportion to frequency.  These two contributions increase total mesh 

reflector weight.  In this respect, the inflatables have the high-frequency advantage of their 

performance actually being independent of frequency.   

 

 Reflector mass estimates of Astromesh™ have previously used 20% of their weight for 

the mesh and web structure [10].  In addition, to reconcile all the variations in what constitutes 

the reflector weight according to those reported in the literature, a system weight was baselined as 

the key parameter.  Deployable support booms were added to the mesh reflector weight and an 

inflation system added to the inflatable weight.  Other adjustments include the feed in baselining 

system weight.  Figure 7 shows that when the mesh reflector weight is adjusted to account for Ka-

band operation and to include these other adjustments as described above, inflatables show a clear 

weight advantage at Ka-band.   
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Comparison of Reflector Antenna Weight at Ka-Band
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Figure 7:  Comparison of Technologies by Adjusting the Mesh Weight to Ka-Band 

 
 The mesh reflector weight estimate for 13.3m diameter is near 310 kg while the inflatable 

weight estimate is 135 kg.  From Figure 7 it is clear that the mesh reflector has a disadvantage at 

the larger diameters when scaled for higher frequencies.  In fact, the mesh surface has another 

disadvantage in having peak sidelobes or “grating” lobes due to the finite facet size [10].   

 

 The newest approaches to inflatables uses membrane materials developed by NASA 

Langley Research Center (LaRC) and licensed to SRS Technologies. LaRC CP1™ and CP2™ 

Polymer Materials have been formed to the reflector shape, thin-film conductively coated, 

stabilized and thermally set to produce the surfaces in the form suitable for millimeter-wave 

reflectors.  Figures 8 and 9 show the material supported by inflatable torus and a demonstration 

of the high quality surfaces that are producible. 

   
 
   Figure 8:  Membrane surface supported               Figure 9:  High Quality surface on  

    By Inflated Torus                                                       Membrane materials  

   (SRS Technologies webpage http://www.stg.srs.com/atd/advpolymers.htm) 
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 Studies show excellent surface properties and now test articles are under development to 

determine if these membrane materials meet the surface accuracy and stability needs for such a 

mission.  At this point, inflatables appear to be the most promising antenna technology for large 

Ka-band reflectors. 

 

Preliminary Requirements 
 

 To summarize the results of this study into a concise and usable form, a set of 

preliminary system requirements was derived for the proposed telecommunication relay satellite 

link [21].  Included for completeness is the secondary system requirement for X-Band 

communications as the emergency backup system.  Also shown in Table 5 is the derived 

requirement for Ka-band gain and transmit power from the EIRP.  Low gain antennas are 

included as part of the communications system and only used in a fail-safe mode.  Finally, a 

preliminary block diagram for this system is shown in Figure 10.   

  

Table 5:  Telecommunications Relay Satellite Preliminary Requirements 

 

PARAMETER REQUIREMENT 
Frequencies  

 Ka-Band Primary 34.2-34.7 GHz UL, 31.8-32.3 GHz DL 

 X-Band Emergency 7.145-7.190 GHz UL, 8.4-8.45 GHz DL 

Polarization  RHCP 

EIRP   

 Ka-Band Primary 81.7 dBW 

          Gain 70 dBiC 

                     Transmit Power 15 W 

 X-Band Emergency 42 dBW    

Sidelobes < 20 dB UL 

S/C Pointing +/-150 arcsec 

Data Rate  

 Ka-Band Primary 1 Mb/s (minimum) 

 X-Band Emergency 1 Kb/s (minimum) 

Life 15 years 

Field of Regard 18.3° 
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Figure 10:  Telecommunications Relay Station RF Block Diagram 
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Potential Antenna Configurations 
 
 Consider the multitude of antenna configurations available for this mission.  The most 

popular choices from previous deep space missions have been either the center-fed full parabolic 

reflector or the Cassegrain reflector.  The center-fed reflector poses difficulty when implemented 

in large apertures since the transmission lines from the transmitter (on the S/C) to the feed are 

long (fractions of the reflector diameter).  A quick survey of other antenna configurations 

includes the offset, offset Cassegrain, Gregorian and various dual reflector arrangements.  These 

all have critical alignment issues when either the feed or the reflector is remote from the S/C.  

The earlier discussion on long transmission line lengths concludes that the reflector must be the 

one remote.  This directly implies two likely operational constraints. 1) The reflector main surface 

must be deployed (likely from a boom) then opened. 2) A high degree of alignment and stability 

must be maintained between the reflector surface(s) and the feed.  For the Cassegrain, the main 

reflector is not required to be a continuous conductive surface through the central blockage area.  

A full paraboloid could be deployed and referenced from the S/C.  Hence, the Cassegrain 

mitigates the previously discussed limitations and constraints of other configurations.  This 

mission’s preliminary choice of antenna is the Cassegrain reflector with the feed, subreflector and 

main reflector mounted “on” the S/C and is beginning point for continuing antenna configuration 

studies.   
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Conclusion 
 

 This study has demonstrated that for the smaller satellites envisioned for our future deep 

space missions, the telecommunications system weight and power will consume significantly 

larger percentages of the S/C resources than previous missions.  As a direct result of each mission 

carrying the full suite of communications hardware, these smaller-mission S/C will carry several 

less instruments than a S/C linked through the relay station satellite.  Hence, over the many S/C 

expected to explore these planets and particularly their moons, many additional instruments could 

be added.  With those additional instruments, the data gathering expands to several additional 

missions worth of data.  This approach appears to be the most promising alternative to a direct-to-

earth link on each S/C consuming a greater percentage of weight and power.  The study further 

concludes that such a relay station is highly feasible and that a telecommunications relay station 

at Jupiter and Saturn would support the high data rates required for several simultaneous missions 

to those planets.  Finally, the technology of choice points to the inflatables as to the best 

technology match for the relay station antenna.   
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